vignettes/articles/plot_pct_fat_vs_leptin.Rmd
plot_pct_fat_vs_leptin.Rmd
This article generates a scatterplot of the (post - pre) change in % body fat vs. plasma leptin levels (Extended Data Fig. 1G).
library(MotrpacRatTraining6moWATData)
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
library(ggplot2)
library(scales)
save_plots <- dir.exists(paths = file.path("..", "..", "plots"))
x <- PHENO_WAT %>%
filter(omics_analysis) %>%
transmute(pid = as.numeric(pid),
fat_diff = post_fat_pct - pre_fat_pct) %>%
left_join(ANALYTES, by = "pid") %>%
dplyr::select(pid, sex, timepoint, fat_diff, leptin)
p <- ggplot(x, aes(x = fat_diff, y = leptin)) +
stat_smooth(aes(group = sex), method = "lm",
formula = "y ~ x", se = FALSE, lty = 2,
color = "black", linewidth = 0.3) +
geom_point(aes(shape = sex, color = timepoint),
size = 1) +
scale_x_continuous(name = "Change in % Body Fat (Post - Pre)",
breaks = seq(-6, 4, 2)) +
scale_y_continuous(name = "Leptin (pg/mL)",
limits = c(0, NA),
breaks = 1e04 * (0:6),
labels = scales::label_scientific(digits = 1)) +
scale_color_manual(name = "Timepoint",
values = c("#bebebe", "#238443", "black")) +
guides(shape = guide_legend(title = "Sex")) +
theme_bw(base_size = 6) +
theme(axis.text = element_text(size = 6, color = "black"),
axis.title.x = element_text(size = 6.5, color = "black",
margin = margin(t = 6)),
axis.title.y = element_text(size = 6.5, color = "black",
margin = margin(r = 6)),
legend.title = element_text(size = 6.5, color = "black"),
legend.text = element_text(size = 6, color = "black"),
legend.key.size = unit(8, "pt"),
axis.line = element_line(color = "black", linewidth = 0.3),
panel.grid.major = element_line(linewidth = 0.3),
panel.grid.minor = element_blank(),
panel.border = element_blank())
p