Package index
-
list_available_data()
- List available data
-
load_sample_data()
- Load sample-level data
-
combine_normalized_data()
- Combine normalized sample-level data
-
plot_feature_normalized_data()
- Plot sample-level data for a feature
-
load_feature_annotation()
- Load feature annotation
-
load_atac_feature_annotation()
- Load ATAC feature annotation
-
load_methyl_feature_annotation()
- Load METHYL feature annotation
-
combine_da_results()
- Combine differential analysis results
-
load_training_da()
- Load training differential analysis results
-
load_metab_da()
- Load metabolomics differential analysis
-
plot_feature_logfc()
- Plot differential analysis results for a feature
-
load_epigen_da()
- Load epigenetic differential analysis results
-
load_methyl_raw_data()
- Load raw METHYL data
-
get_file_from_url()
- Load file from GCS
-
get_rdata_from_url()
- Load RData from GCS
-
atac_timewise_da()
- ATAC-seq timewise differential analysis
-
atac_training_da()
- ATAC-seq training differential analysis
-
immuno_timewise_da()
- Immunoassay timewise differential analysis
-
immuno_training_da()
- Immunoassay training differential analysis
-
metab_timewise_da()
- Metabolomics timewise differential analysis
-
metab_training_da()
- Metabolomics training differential analysis
-
metab_meta_regression()
- Metabolomics meta-regression
-
proteomics_timewise_da()
- Proteomics timewise differential analysis
-
proteomics_training_da()
- Proteomics training differential analysis
-
rrbs_differential_analysis()
- RRBS differential anlaysis
-
transcript_timewise_da()
- RNA-seq timewise differential analysis
-
transcript_training_da()
- RNA-seq training differential analysis
-
atac_prep_data()
- Prepare ATAC-seq dataset
-
analyze_tile()
- Analyze genome tiles
-
fix_covariates()
- Format covariates for differential analysis
-
merge_sites_by_clusters()
- Merge sites by cluster
-
run_deseq()
- Wrapper for
DESeq2::DESeq()
-
transcript_prep_data()
- Preprocess RNA-seq data
-
merge_two_dea_dfs()
- Concatenate data frames
-
metabolite_meta_regression()
- Meta-regression for a metabolite
-
forest_plot()
- Print forest plot
Metabolomics meta-analysis
Functions used to perform metabolomics meta-analysis, which was abandoned in favor of meta-regression.
-
metab_meta_analysis()
- Metabolomics timewise meta-analysis
Graphical clustering
Perform and explore the Bayesian graphical clustering analysis effectively used to transforms continuous z-scores (normalized effect sizes) into discrete states to summarize trajectories of differential features in a graph.
-
bayesian_graphical_clustering()
- Bayesian graphical clustering
-
repfdr_wrapper()
repfdr
wrapper
-
extract_top_trajectories()
- Extract top trajectories
-
extract_main_clusters()
- Extract main graphical clusters
-
get_all_trajectories()
- Remove all non-empty trajectories
-
extract_tissue_sets()
- An auxiliary function for getting the top analyte sets for a set of tissues.
-
filter_edge_sets_by_trajectories()
- Filter edge sets to largest trajectories
-
get_trajectory_sizes_from_edge_sets()
- Get trajectory sizes
-
limit_sets_by_regex()
- Reduce a list of sets by a regex
-
get_tree_plot_for_tissue()
- Graph representation of feature trajectories
-
plot_features_per_cluster()
- Plot feature composition of clusters
-
plot_feature_trajectories()
- Plot feature trajectories
-
cluster_pathway_enrichment()
- Pathway enrichment for graphical clusters
-
custom_cluster_pathway_enrichment()
- Custom pathway enrichment for graphical clusters
-
gene_pathway_enrichment()
- Gene pathway enrichment
-
run_fella()
- Metabolomics pathway enrichment
-
make_kegg_db()
- Make KEGG database
-
enrichment_network_vis()
- Pathway enrichment network
-
check_cluster_res_format()
- Check clustering results format
-
ssGSEA2_wrapper()
- Run ssGSEA2 or PTM-SEA
-
prepare_gsea_input()
- Prepare GCT file for GSEA
-
prepare_ptmsea_input()
- Prepare PTM-SEA input
-
load_uniprot_human_fasta()
- Load UniProt human canonical protein FASTA file
-
find_flanks()
- Find human flanks
-
atac_normalize_counts()
- Filter and normalize raw ATAC-seq counts
-
transcript_normalize_counts()
- Filter and normalize raw RNA-seq counts
-
call_pca_outliers()
- Call PCA outliers
-
plot_pcs()
- Plot 2D scatter plot of principal components
-
atac_call_outliers()
- Call ATAC-seq sample outliers
-
transcript_call_outliers()
- Call RNA-seq sample outliers
-
get_peak_annotations()
- Get genomic peak annotations
-
filter_outliers()
- Filter outliers
-
viallabel_to_pid()
- Map vial labels to PIDs
-
df_to_numeric()
- Make data frame numeric only
-
STOPWORDS
- Stop words