Package index
-
list_available_data() - List available data
-
load_sample_data() - Load sample-level data
-
combine_normalized_data() - Combine normalized sample-level data
-
plot_feature_normalized_data() - Plot sample-level data for a feature
-
load_feature_annotation() - Load feature annotation
-
load_atac_feature_annotation() - Load ATAC feature annotation
-
load_methyl_feature_annotation() - Load METHYL feature annotation
-
combine_da_results() - Combine differential analysis results
-
load_training_da() - Load training differential analysis results
-
load_metab_da() - Load metabolomics differential analysis
-
plot_feature_logfc() - Plot differential analysis results for a feature
-
load_epigen_da() - Load epigenetic differential analysis results
-
load_methyl_raw_data() - Load raw METHYL data
-
get_file_from_url() - Load file from GCS
-
get_rdata_from_url() - Load RData from GCS
-
atac_timewise_da() - ATAC-seq timewise differential analysis
-
atac_training_da() - ATAC-seq training differential analysis
-
immuno_timewise_da() - Immunoassay timewise differential analysis
-
immuno_training_da() - Immunoassay training differential analysis
-
metab_timewise_da() - Metabolomics timewise differential analysis
-
metab_training_da() - Metabolomics training differential analysis
-
metab_meta_regression() - Metabolomics meta-regression
-
proteomics_timewise_da() - Proteomics timewise differential analysis
-
proteomics_training_da() - Proteomics training differential analysis
-
rrbs_differential_analysis() - RRBS differential anlaysis
-
transcript_timewise_da() - RNA-seq timewise differential analysis
-
transcript_training_da() - RNA-seq training differential analysis
-
atac_prep_data() - Prepare ATAC-seq dataset
-
analyze_tile() - Analyze genome tiles
-
fix_covariates() - Format covariates for differential analysis
-
merge_sites_by_clusters() - Merge sites by cluster
-
run_deseq() - Wrapper for
DESeq2::DESeq()
-
transcript_prep_data() - Preprocess RNA-seq data
-
merge_two_dea_dfs() - Concatenate data frames
-
metabolite_meta_regression() - Meta-regression for a metabolite
-
forest_plot() - Print forest plot
Metabolomics meta-analysis
Functions used to perform metabolomics meta-analysis, which was abandoned in favor of meta-regression.
-
metab_meta_analysis() - Metabolomics timewise meta-analysis
Graphical clustering
Perform and explore the Bayesian graphical clustering analysis effectively used to transforms continuous z-scores (normalized effect sizes) into discrete states to summarize trajectories of differential features in a graph.
-
bayesian_graphical_clustering() - Bayesian graphical clustering
-
repfdr_wrapper() repfdrwrapper
-
extract_top_trajectories() - Extract top trajectories
-
extract_main_clusters() - Extract main graphical clusters
-
get_all_trajectories() - Remove all non-empty trajectories
-
extract_tissue_sets() - An auxiliary function for getting the top analyte sets for a set of tissues.
-
filter_edge_sets_by_trajectories() - Filter edge sets to largest trajectories
-
get_trajectory_sizes_from_edge_sets() - Get trajectory sizes
-
limit_sets_by_regex() - Reduce a list of sets by a regex
-
get_tree_plot_for_tissue() - Graph representation of feature trajectories
-
plot_features_per_cluster() - Plot feature composition of clusters
-
plot_feature_trajectories() - Plot feature trajectories
-
cluster_pathway_enrichment() - Pathway enrichment for graphical clusters
-
custom_cluster_pathway_enrichment() - Custom pathway enrichment for graphical clusters
-
gene_pathway_enrichment() - Gene pathway enrichment
-
run_fella() - Metabolomics pathway enrichment
-
make_kegg_db() - Make KEGG database
-
enrichment_network_vis() - Pathway enrichment network
-
check_cluster_res_format() - Check clustering results format
-
ssGSEA2_wrapper() - Run ssGSEA2 or PTM-SEA
-
prepare_gsea_input() - Prepare GCT file for GSEA
-
prepare_ptmsea_input() - Prepare PTM-SEA input
-
load_uniprot_human_fasta() - Load UniProt human canonical protein FASTA file
-
find_flanks() - Find human flanks
-
atac_normalize_counts() - Filter and normalize raw ATAC-seq counts
-
transcript_normalize_counts() - Filter and normalize raw RNA-seq counts
-
call_pca_outliers() - Call PCA outliers
-
plot_pcs() - Plot 2D scatter plot of principal components
-
atac_call_outliers() - Call ATAC-seq sample outliers
-
transcript_call_outliers() - Call RNA-seq sample outliers
-
get_peak_annotations() - Get genomic peak annotations
-
filter_outliers() - Filter outliers
-
viallabel_to_pid() - Map vial labels to PIDs
-
df_to_numeric() - Make data frame numeric only
-
STOPWORDS - Stop words